RAG(검색 증강 생성)을 복잡한 인프라 구축 없이 AI 데이터베이스 하나로 쉽게 만들 수 있습니다.

Read post

벡터데이터베이스(VectorDB)를 활용해 대규모 언어모델(LLM)의 한계를 극복하고자 하는 방안이 주목받고 있습니다. 전문 분야나 학습되지 않은 도메인 데이터, 예를 들어 로펌의 판례나 회사의 커뮤니케이션 기록 등 특화된 정보에 대해 정확한 답변을 제공하기 위해, 모든 종류의 데이터를 벡터임베딩으로 변환하여 저장하고 검색할 수 있는 벡터 데이터베이스를 LLM의 장기기억 저장장치로 사용하는 것입니다. 이를 위해 위키피디아를 사용한 Q&A 시스템을 예로 들어 데이터 전처리, 벡터화, 저장, 검색 등의 과정을 통해 벡터 데이터베이스가 어떻게 LLM을 보완할 수 있는지에 대한 구체적인 사례를 살펴봅니다.

Read post

Copyright © 2023 Cognica, Inc.

Made with ☕️ and 😽 in San Francisco, CA.